

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Пg^B*-Continuity in Topological Space

Nathiya .B¹, Vaiyomathi .K²

M.Phil Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore, India¹

Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, India²

Abstract: In this Paper using πg^b^* -closed set in topological spaces we introduce a new class of sets called π generalized ^ b*-continuous functions (briefly πg^b *-continuous functions). Further the concept of almost πg^b *continuous function and πg^b^* -irresolute function are discussed.

Key words: πg^b* -continuous function, πg^b* -irresoulte function, almost πg^b* -continuous function.

I. INTRODUCTION

Levine[10] and Andrijevic[2] introduced the concept of the complements of the above mentioned sets are called generalized open sets and b-open sets respectively in semi-open, α -open, pre-open, semi-open, regular open, btopological spaces. The class of b-open sets is contained in open, b*-open sets respectively. The intersection of all the class of semipre-open sets and contains the class of semi-closed (resp. α -closed, pre-closed, semipre-closed, semi-open and the class of pre-open sets. Since then regular-closed and b-closed) subsets of (X,τ) containing A several researches were done and the notion of generalized is called the semi-closure (resp. α -closure, pre-closure, semi-closed, generalized pre-closed and generalized semipre-closure, regular-closure and b-closure) of A and is semipre-open sets were investigated. In 1968 Zaitsev[18] denoted by scl(A) (resp. αcl(A), pcl(A), spcl(A), rcl(A) defined π -closed sets.

Later Dontchev and Noiri[6] introduced the notion of πg closed sets. Park defined π gp-closed sets. Then Aslim, Caksu and Noir[3] introduced the notion of π gs-closed sets. D. Sreeja and S. Janaki [17] studied The idea of πgb closed sets and introduced the concept of π gb-continuity. Later the properties and characteristics of π gb-closed and **Definition 2.3** π gb-continuity were introduced by Sinem Caglar and Gulhan Ashim[16]. Dhanya. R and A. Parvathi[4] introduced the concept of πgb^* -closed sets and πgb^* continuity in topological spaces. Hussain[7] introduced the (2) a gp-closed set if $pcl(A) \subset U$ whenever $A \subset U$ and U is concept of almost continuity in topological spaces.

II. PRELIMINARIES

Throughout this paper (X,τ) represents non empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. A subset A of a topological space (X,τ) , cl(A) and int(A) denote the closure of A and interior of A respectively. (X,τ) will be replaced by X if there is no chance of confusion.

Definiton 2.1

Let (X,τ) be a topological space. A subset A of (X,τ) is called

- a semi-closed set if $int(cl(A)) \subseteq A$. (1)
- (2) a α -closed set if cl(int(cl(A))) \subseteq A.
- a **pre-closed set** if $cl(int(A)) \subseteq A$. (3)
- a semipre-closed set if $int(cl(int(A))) \subseteq A$. (4)
- (5) a **regular-closed set** if A=cl(int(A)).
- (6) a **b-closed set** if $cl(int(A)) \cap int(cl(A)) \subseteq A$.
- a **b*-closed set** if $int(cl(A)) \subset U$, whenever $A \subset U$ (7) and U is b-open.

and bcl(A)). A subset A of (X,τ) is called clopen if it is both open and closed in (X,τ) .

Definition 2.2

A subset A of a space (X,τ) is called π -closed if A is finite intersection of regular closed sets.

A subset A of a space (X,τ) is called

(1) a **g-closed set** if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

open in (X,τ) .

(3) a gs-closed set if $scl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

(4) a **gb-closed set** if $bcl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

(5) a ga-closed set if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .

(6) a π **g-closed set** if cl(A) \subset U whenever A \subset U and U is π open in (X,τ) .

(7) a π ga-closed set if α cl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

(8) a **\pigp-closed set** if pcl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

(9) a π gs-closed set if scl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

(10) a **\pigb-closed set** if bcl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

Complement of π -closed set is called π -open set.

Complement of g-closed, gp-closed, gs-closed, gb-closed, ga-closed, π ga-closed, π gp-closed, π gs-closed and π gbclosed sets are called g-open, gp-open, gs-open, gb-open,

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

respectively.

Definition 2.4

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called continuous(resp. α pre-continuous, g-continuous, continuous, regular continuous, gb- continuous, b*- continuous) if $f^{-1}(V)$ is closed (resp. α - closed, pre- closed, g- closed, regular closed, gb- closed, b*- closed) in (X,τ) for every closed set V in (Y,σ) .

Definition 2.5

A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called π -continuous(resp. $\pi\alpha$ - π g-continuous, continuous, π gp-continuous, πgbcontinuous, πgb^* - continuous) if $f^{-1}(V)$ is closed (resp. $\pi\alpha$ closed, π gp- closed, π g- closed, π gb- closed, π gb*- closed) in (X,τ) for every closed set V in (Y,σ) .

III. πg^h*-CONTINUITY

Definition 3.1

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called πg^{h} -continuous if $f^{-1}(V)$ is πg^{h*} -closed in (X,τ) for every closed set V of (Y,σ) .

Definition 3.2

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called $\pi g^{h*-irresolute}$ if f ¹(V) is πg^b^* -closed in (X, τ) for every πg^b^* -closed set V in (Y,σ)

Definition 3.3

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called πg^b^* -closed if f(V)is πg^b^* -closed in (Y,σ) for every πg^b^* -closed set V in (X,τ).

Example 3.1(a)

Consider $X = \{a, b, c, d\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $Y=\{a,b,c,d\}$ with topology $\sigma=\{Y,\Phi,\{a\},\{a,b\}\}\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c, then f is πg^b^* -continuous.

Example 3.2(a)

Consider $X=\{a,b,c\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ and $Y = \{a, b, c\}$ with topology $\sigma = \{Y, \Phi, \{a\}\}.$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c, then f is πg^b *-irresolute.

Theorem 3.1

Every continuous function is πg^{b*} -continuous.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a continuous function. Let V be a closed set in Y. Since f is continuous $f^{-1}(V)$ is closed in X. As every closed set is πg^b^* -closed. f⁻¹ is πg^b^* -closed. Hence f is πg^b^* -continuous.

Remark 3.1

The converse of the above theorem need not be true as seen from the following example.

Example 3.1

Consider $X = \{a, b, c\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ and $Y=\{a,b,c\}$ $\sigma = \{Y, \Phi, \{b, c\}\}.$ with topology Let

Theorem 3.2

Every π -continuous function is πg^{b*} -continuous.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a π -continuous function. Let V be a closed set in Y. Since f is π -continuous f⁻¹(V) is π -closed in X. As every α -closed set is πg^{h} -closed. f⁻¹ is πg^{h} -closed. Hence f is πg^b^* -continuous.

Remark 3.2

The converse of the above theorem need not be true as seen from the following example.

Example 3.2

Consider $X = \{a, b, c\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \Phi, \{b\}, \{b, c\}\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c,f(d)=dthen f is πg^b *-continuous but it is not π -continuous.

Theorem 3.3

Every α -continuous function is πg^{b*} -continuous.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a α -continuous function. Let V be a closed set in Y. Since f is α -continuous f⁻¹(V) is α -closed in X. As every α -closed set is πg^b^* -closed. f⁻¹ is πg^b^* -closed. Hence f is πg^b^* -continuous.

Remark 3.3

The converse of the above theorem need not be true as seen from the following example.

Example 3.3

Consider $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ and $X=\{a,b,c\},\$ $Y=\{a,b,c\}$ with topology $\sigma=\{Y,\Phi,\{a\},\{c\},\{a,c\}\}\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c, then f is πg^b^* -continuous but it is not α -continuous.

Theorem 3.4

Every g-continuous function is πg^{b*} -continuous.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a g-continuous function. Let V be a closed set in Y. Since f is g-continuous $f^{-1}(V)$ is g-closed in X. As every g-closed set is πg^b^* -closed. $f^{-1}(V)$ is πg^b^* -closed. Hence f is πg^b^* -continuous.

Remark 3.4

The converse of the above theorem need not be true as seen from the following example.

Example 3.4

 $X=\{a,b,c\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ Consider and with topology $\sigma = \{Y, \Phi, \{a\}, \{b, c\}\}$. $Y = \{a, b, c\}$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c. Then f is πg^b^* -continuous but it is not g-continuous.

Theorem 3.5

Every pre continuous function is πg^b^* -continuous.

Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a pre continuous function. Let V be a closed set in Y. Since f is pre continuous $f^{-1}(V)$ is pre-closed in X. As every pre-closed set is πg^{b*} -closed. $f^{-1}(V)$ is $\pi g^{h}b^*$ -closed. Hence f is $\pi g^{h}b^*$ -continuous.

Remark 3.5

The converse of the above theorem need not be true as seen from the following example.

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Example 3.5

Consider

 $\tau = \{X, \Phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}.$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=b; f(b)=c; f(c)=a; f(d)=d. Then f is πg^{b*} -continuous but it is not pre-continuous.

Theorem 3.6

Every gb-continuous function is πg^{b*} -continuous. Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a gb-continuous function. Let V be a closed set in Y. Since f is gb-continuous f⁻¹(V) is gbclosed in X. As every gb-closed set is πg^{b*} -closed. f ¹(V) is πg^b^* -closed. Hence f is πg^b^* -continuous.

Remark 3.6

The converse of the above theorem need not be true as **Example 3.10** seen from the following example.

Example 3.6

Consider X={a,b,c,d}, $\tau={X,\Phi,{b},{c,d}}$ and f:(X, τ) \rightarrow (Y, σ) be defined by f(a)=a; f(b)=c; f(c)=b. Then f $Y = \{a, b, c, d\}$ with topology $\sigma = \{Y, \Phi, \{a, c, d\}\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=a; f(b)=b; f(c)=c; f(d)=d. Then f is πg^{b*} -continuous but it is not gb-continuous.

Theorem 3.7

Every $\pi g\alpha$ -continuous function is πg^{h} -continuous. Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a $\pi g\alpha$ -continuous function. Let V be a closed set in Y. Since f is $\pi g\alpha$ -continuous $f^{-1}(V)$ is $\pi g\alpha$ -closed in X. As every $\pi g\alpha$ -closed set is πg^{h} closed. f $^{-1}(V)$ is πg^{b*} -closed. Hence f is πg^{b*} continuous.

Remark 3.7

The converse of the above theorem need not be true as seen from the following example.

Example 3.7

Consider $X = \{a,b,c\}, \tau = \{X,\Phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $Y = \{a, b, c\}$ with topology $\sigma = \{Y, \Phi, \{a\}\}.$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=b; f(b)=c; f(c)=c. Then f is πg^b^* -continuous but it is not $\pi g\alpha$ -continuous.

Theorem 3.8

Every πg^b^* -continuous function is πgb -continuous. Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a πg^{h*} -continuous function. Let V be a closed set in Y. Since f is πg^b^* -continuous f⁻¹(V) is π gb-closed in X. As every π g^b*-closed set is π gbclosed. $f^{1}(V)$ is π gb-closed. Hence f is π gb-continuous.

Remark 3.8

The converse of the above theorem need not be true as seen from the following example.

Example 3.8

Consider X= $\{a,b,c\}, \tau = \{X,\Phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $Y = \{a, b, c\}$ with topology $\sigma = \{Y, \Phi, \{a\}\}.$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=b; f(b)=b; f(c)=c. Then f is π gb-continuous but it is not π g^b*-continuous.

Theorem 3.9

Every πg^b^* -continuous function is πgs -continuous. Proof

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a πg^b^* -continuous function. Let Let f: $X \rightarrow Y$ be πg^b^* -irresolute function. Let V be closed

Remark 3.9

The converse of the above theorem need not be true as seen from the following example.

Example 3.9

Consider X= $\{a,b,c\}, \tau = \{X,\Phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$ and $Y = \{a, b, c\}$ with topology $\sigma = \{Y, \Phi, \{a\}\}.$ Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=b; f(b)=c; f(c)=a. Then f is π gs-continuous but it is not π g^hb*-continuous.

Remark 3.10

 π gp-continuous and π g^{b*}-continuous are independent of each other. It is shown in the following example.

 $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ Let $X=\{a,b,c\},\$ and $Y=\{a,b,c\}$ with topology $\sigma=\{Y,\Phi,\{b\},\{b,c\}\}$. Let $^{-1}{a}={a}\pi g^{b}$ -continuous but it is not πgp -continuous and f⁻¹{a,c}={a,b} is π gp-continuous but it is not π g^b*continuous.

Remark 3.11

 π g-continuous and π g^b*-continuous are independent of each other. It is shown in the following example.

Example 3.11

Let	$X=\{a,b,c,d\},\$
$\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$	and
$Y=\{a,b,c,d\}$ with	topology
$\sigma = \{Y, \Phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Let	f:
$(X,\tau) \rightarrow (Y,\sigma)$ be an identity function. Then	f^{-}
1 {a,b,d}={a,b,d} is π g-continuous but it is	s not πg ^{b*} -
continuous and f ⁻¹ {a}={a,b} is πg^{b*} -contin	nuous but it is
not π g-continuous.	

IV. πg^hb*-CONTINUITY AND ITS **CHARACTERISTICS**

Theorem 4.1

Let f: $X \rightarrow Y$ be a function. Then the following statements are equivalent:

f is πg^b^* -continuous; (1)

(2)The inverse image of every open set in Y is πg^b^* -open in X.

Proof

(1) \Rightarrow (2)

Let U be open subset of X. Then (Y-U) is closed in Y. Since f is πg^b -continuous, f⁻¹(Y-U)=X-f⁻¹(U) is πg^b closed in X. Hence $f^{-1}(U)$ is πg^{h} -open in X.

(2) $\Rightarrow(1)$

Let V be a closed subset of Y. Then (Y-V) is open in Y, hence by hypothesis (2) $f^{-1}(Y-U)=X-f^{-1}(V)$ is πg^{b*} -open in X. Hence f⁻¹(V) is πg^b^* -closed in X. Therefore, f is πg^b *-continuous.

Theorem 4.2

Every πg^b^* -irresolute function is πg^b^* -continuous.

Proof

V be a closed set in Y. Since f is πg^b^* -continuous f⁻¹(V) set in Y, then V is πg^b^* -closed in Y. since f is πg^b^* -

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

irresolute f⁻¹(V) is πg^b^* -closed in X. Hence f is πg^b^* - (2) continuous.

Remark 4.2

The converse of the above theorem need not be true it can (1)be seen from the following example.

Example 4.2

Consider $X=Y=\{a,b,c\},\$ $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\},\$ $\sigma = \{X, \Phi, \{a\}\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is πg^b^* -continuous but it is not πg^b^* -irresolute.

Remark 4.3

Composition of two πg^b *-continuous is need not be πg^b^* -continuous.

Example 4.3

Let $X = \{a, b, c, d\},\$ $\sigma = \{Y, \Phi, \{a\}, \{c\}, \{a,c\}\}, \quad \eta = \{Z, \Phi, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}.$ Define f: $(X,\tau) \rightarrow (X,\sigma)$ by f(a)=a; f(b)=d; f(c)=b; f(d)=c. Define g: $(X,\sigma) \rightarrow (X,\eta)$ by g(a)=a; g(b)=c; g(c)=b; g(d)=d. For a function f: $X \rightarrow Y$, the following statements are Then f and g are πg^b^* -continuous but $g \circ f$ is not πg^b^* continuous.

Theorem 4.4

Let f: $X \rightarrow Y$ be a function. Then the following statements are equivalent:

For each $x \in X$ and each open set V containing (1)f(x) there exists a πg^{b*} -open set U containing x sch that $f(U) \subset V$.

(2) $f(\pi g^{h} b^{*}-cl(A)) \subset cl(f(A))$ for every subset A of Х.

Proof

(1)⇒(2)

Let $y \in f(\pi g^b^*-cl(A))$ then, there exists an $x \in \pi g^b^*-cl(A)$ cl(A) such that y=f(x). we claim that $y \in cl(f(A))$ and let V be any open neighborhood of y. Since $x \in \pi g^{b*}-cl(A)$ there exists an πg^{b*} -open set U such that $x \in U$ and $U \cap A \neq \Phi$, $f(U) \subset V$. Since $U \cap A \neq \Phi$, $f(A) \cap V \neq \Phi$. Therefore, $y=f(x) \in cl f(A)$. Hence $f(\pi g^b * cl(A))$. Hence $f(\pi g^b*cl(A)) \subset cl f(A).$

(2)⇒(1)

Let $x \in X$ and V be any open set containing f(x). Let $A=f^{-1}$ ¹(Y-U), since $f(\pi g^b^*-cl(A)) \subset cl(f(A)) \subset (Y-V) \Rightarrow$ $\pi g^{b*}cl(A) \subset f^{-1}(Y-V)=A$. Hence $\pi g^{b*}-cl(A)=A$. Since $f(x) \in V \Rightarrow x \in f^{-1}(V) \Rightarrow x \notin \pi g^b^*-cl(A)$. Thus there exists an open set U containing x such that U \cap A= Φ $f(U) \cap f(A) = \Phi$. Therefore $f(U) \subset V$.

Definition 4.1

A topological space (X,τ) is πg^b^* -space if every πg^b^* closed set is closed.

Theorem 4.5

Every πg^b *-space is πg^b *- $T_{1/2}$ space. Proof

Let (X,τ) be a πg^b^* -space and let $A \subset X$ be πg^b^* -closed set in X. Then A is closed \Rightarrow A is b*-closed \Rightarrow (X, τ) is a $\pi g^b*-T_{1/2}$ space.

Theorem 4.6

Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a function then,

(1)space, then f is b*-irresolute.

If f is πg^b^* -continuous and X is πg^b^* - $T_{1/2}$ space, then f is b*-continuous.

Proof

Let V be b*-closed in Y, then V is πg^{b*} -closed in Y. Since f is πg^b *-irresolute, $f^{-1}(V)$ is πg^{b*-} closed in X. Since X is $\pi g^{b*}-T_{1/2}$ space, f⁻¹(V) is b*closed. Therefore f is b*-continuous.

(2)Let V be closed in Y. Since f is πg^{h*-} continuous, f⁻¹(V) is πg^{b*} -closed in X. Since X is $\pi g^{h}b^{*-}T_{1/2}$ space, f⁻¹(V) is b*-closed. Therefore f is b*continuous.

Definition 4.2

A function f: $X \rightarrow Y$ is said to be almost πg^b^* -continuous $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}, \text{ if } f^{-1}(V) \text{ is } \pi g^b*\text{-closed in } X \text{ for every regular closed set } X \text{ for eve$ V of Y.

Theorem 4.7

equivalent:

(1)f is almost πg^b^* -continuous.

f⁻¹(V) is πg^b^* -open in X for every regular open (2) set V of Y.

f ⁻¹(int(cl(V))) is πg^b* -open in X for every open (3) set V of Y.

f $^{-1}(cl(int(V)))$ is $\pi g^{b*}-closed$ in X for every (4) closed set V of Y.

Proof (1)⇒(2)

Suppose f is almost πg^b^* -continuous. Let V be a regular open subset of Y. Since (Y-V) is regular closed and f is almost πg^b *-continuous, $f^{-1}(Y-V) = X - f^{-1}(V)$ is πg^b *closed in X. Hence $f^{-1}(V)$ is $\pi g^{-1}b^{*}$ -open in X.

(2)⇒(1)

Let V be a regular closed subset of Y. Then (Y-V) is regular open. By the hypothesis, $f^{-1}(Y-V)=X-f^{-1}(V)$ is πg^{b*} -open in X. Hence $f^{(1)}(V)$ is πg^{b*} -closed. Thus f is πg^b *-continuous.

 $(2) \Rightarrow (3)$

Let V be an open subset of Y. Then int(cl(V)) is regular open in Y. By the hypothesis, $f^{-1}(int(cl(V)))$ is πg^{b*} -open in X.

(3)⇒(2)

Let V be a regular open subset of Y. Since V=int(cl(V))and every regular open set is open then $f^{-1}(V)$ is πg^{h+1} open in X.

 $(3) \Rightarrow (4)$

Let V be a closed subset of Y. Then (Y-V) is open in Y. By the hypothesis, $f^{-1}(int(cl(Y-V))) = f^{-1}(Y-cl(int(V))) =$ X-f $^{-1}(cl(int(V)))$ is πg^{h} -open in X. Therefore f $^{1}(cl(int(V)))$ is $\pi g^{b*}-closed$ in X. (4)⇒(3)

Let V be a open subset of Y. Then (Y-V) is closed. By the hypothesis $f^{-1}(Y-cl(int(Y-V))) = X-f^{-1}(int(cl(V)))$ is πg^{h} -closed in X. Therefore, f⁻¹(int(cl(V))) is πg^{h} -open in X.

Theorem 4.8

If f is πg^b^* -irresolute and X is $\pi g^b^* - T_{1/2}$ Every πg^b^* -continuous function is almost πg^b^* continuous.

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Proof

Let f: $X \rightarrow Y$ be πg^{h} -continuous function. Let V be regular closed set in Y, then V is closed in Y. Since f is πg^{h} -continuous function f⁻¹(V) is πg^{h} -clo3sed in X. Therefore f is almost πg^{h} -continuous.

Theorem 4.9

Every almost b*-continuous function is almost $\pi g^{b*-continuous}$.

Proof

Let f: $X \rightarrow Y$ be almost b*-continuous function and let V be regular closed set in Y. Then f⁻¹(V) b*-closed in X, hence f¹(V) is πg^{h} -closed in X. Therefore f is almost πg^{h} -continuous.

Theorem 4.10

Let X be a $\pi g^{b*}-T_{1/2}$ space. Then f: X \rightarrow Y is almost πg^{b*} -continuous if and only if f is almost b*-continuous. **Proof**

Suppose f: X \rightarrow Y is almost πg^{b*} -continuous. Let A be a regular closed subset of Y. Then f⁻¹(A) is πg^{b*} -closed in X. Since X is πg^{b*} -T_{1/2} space, f¹(A) is b*-closed in X. Hence f is almost πg^{b*} -continuous.

Conversely, suppose that f: $X \rightarrow Y$ is almost b*-continuous and A be a regular closed subset of Y. Then f⁻¹(A) is b*closed in X. Since every b*-closed set is $\pi g^{b*-closed}$, f⁻¹(A) is $\pi g^{b*-closed}$. Therefore, f is almost $\pi g^{b*-closed}$. continuous.

REFERENCES

- Ahmad-Al-Omari and Mohd. Salmi Md Noorani., "On generalized b-closed sets", Bulletin of Mathematical Sciences society., Vol.32., pp.19-30, 2009.
- [2] Andrijevic. D., "On b-open sets" ., Mat Vesnik, 48, 59-64,1996.
- [3] Aslim.G., Caksu Guler. A and Noiri. T, "On π gs-closed sets in topological spaces", Acta Math. Hungar., 112(4) ,pp. 275-283,2006.
- [4] Dhanya. R , Parvathi A, "On πgb*-closed sets in Topological spaces", International journal of innovative Research in science, Engineering and Technology., 2319-8753.
- [5] Dontchev J., "On generalizing semi-pre-open sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., Vol.16, pp. 35-48., 1995.
- [6] Dontchev. J and Noiri. T., "Quasi Normal Spsces and πg-closed sets"., Acta Math. Hungar., Vol. 3., 211-219, 2000.
- [7] Hussain. T, "Almost continuous mappings"., Prace Mat., 10,1996.
- [8] Janaki C," Studies On $\pi g\alpha$ -closed sets in topology"., Ph.D Thesis, Bharathiyar university, Coimbatore, 2009.
- [9] Jeyanthi. V, Janaki. C and Soumya. F., "On π[^]g-closed sets in topological spaces"., Mathematics and computer science journal., Vol. 1., pp.37-34., 2016.
- [10] Levine N., "Generalised closed sets in topology", Rend. Circ. Mat. Palermo, Vol. 19, 8996, 1970.
- [11] Levine. N, "Semi open sets and semi continuity in topological spaces", Amer. Math. Monthly, 70., 1963.
- [12] Muthuvel. S and Parimelazhagan., "b*-Closed sets in topological spaces"., Int. Journal of Math Analysis, Vol. 6, no. 47, 2317-2323, 2012.
- [13] Mashhour, M.E. Abd El-Monsef and S.N. El Deeb: "On pre continuous and weakly pre continuous mappings", Proc. Math. Phys. Soc, Egypt 53, 1982.
- [14] Nathiya. B and Vaiyomathi. K., "On πg^{h} -closed sets in topological space", international advanced research journal in science, engineering and technology., vol. 3, 2016.
- [15] Park.J.H., "On πgp-closed sets in topological spaces"., Indian J. Pure. Appl. Mathematics.
- [16] Sinem Caglar Akgun and Gulhan Aslim., "On πgb-closed sets and Related Topics"., Int. Journal of Mathematical Archieve., 3, 5, 1873-1884., 2012.

- [17] Sreeja. D and Janaki .C., "On πgb-closed sets in Topological spaces", International Journal of Mathematical Archieve,2,8,1314-1320, 2011.
- [18] Zaitsev., "On certain classes of topological spaces and their bicompactifications"., Dokl.Akad.Nauk.SSSR.,